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Abstract: The implementation and operation of wastewater treatment plants are fundamental actions for environmental water body pollution
control that generally involve large amounts of financial resources. Hence, employment of optimization techniques for decisions about the
minimum required wastewater treatment plant efficiencies might be very useful. In this study, an optimization technique known as the genetic
algorithm (GA) was combined with a water-quality model to determine the minimum efficiencies for sewage treatment in watersheds. Com-
binations of the optimization technique and models that incorporated environmental quality standards for the parameters of dissolved oxygen
(DO), biochemical oxygen demand (BOD), and equity measures among sewage treatment systems, either as constraints or in the objective
functions, were developed. These combinations were applied to the Santa Maria da Vitória river watershed, located in the State of Espírito
Santo, Brazil, considering possible effluent disposal scenarios and implementation of different established optimization models. The devel-
oped combinations of the genetic algorithm and a water-quality model demonstrated to be versatile and efficient tools for determining the
minimum sewage-removal efficiencies for wastewater treatment plants in watersheds. Among the developed combinations of optimization
models, the best results, or minimum costs, were obtained when the rivers’ self-depuration capabilities were taken into account. DOI:
10.1061/(ASCE)EE.1943-7870.0001048. © 2015 American Society of Civil Engineers.
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Introduction

Planning and management of water resources are very important
tools for the establishment of guidelines and actions for water use,
control and conservation, particularly in regions where there is a
water shortage. The publication of Law No. 9433 in 2007, which
established the National Water Resources Policy (PNRH), was a
milestone in the evolution of the management of water resources
in Brazil. New management tools were introduced as basin plans,
granting of right of use, classification of water bodies, information
systems, and charging for water use. For proper implementation of
these new instruments, it is necessary to develop various computer
support decision-making tools (Machado et al. 2012).

Water quality and self-purification mathematical models are im-
portant tools for the management of water resources. These models
may be used both for prevention and control of water resources
degradation. The applications of these models include choice
of location for enterprises potentially generating water pollution,
definition of minimum wastewater treatment efficiencies for

maintaining water-quality parameters inside standard limits, loca-
tion of the critical sections of river pollution, and forecasting water-
quality parameter values over time and space.

The environmental aspects of hydrodynamic and river basins are
essential for the modeling of water body quality, in evaluating the
pollution control alternatives, as noted by Li et al. (2014), Oliveira
et al. (2012), Chen et al. (2011), and Fang et al. (2008). Using water
bodies for domestic sewage disposal is one of the primary pathways
for environmental degradation. Therefore, the implementation
of sewage treatment stations is a primary strategy for pollution
control.

Awatershed can have several final disposal points for effluents,
with considerable qualitative and quantitative variations and water-
courses with substantially different hydrodynamic characteristics.
Hence, the process of selecting a sewage treatment system is com-
plex, which is why it is useful to combine optimization methods
with models for water-quality simulation in this context. Studies
by Andrade et al. (2013), Albertin et al. (2006), Tsai and Chang
(2001), Zhang et al. (2012), Singh (2011), and Pettelier et al. (2006)
provide examples of this approach.

Andrade et al. (2013) found that the application of water-quality
simulation models allows the analysis of alternative scenarios and
water systems’ behavior studies; however, unlike optimization, this
method does not seek the best or optimal solution, indicating that a
joint application of simulation models and optimization techniques
could be useful.

Several methods have been used to solve optimization problems
in water resources. Aras et al. (2007) and Cho et al. (2004) noted
that conventional mathematical programming methods such as
linear programming, nonlinear programming, and dynamic pro-
gramming have been repeatedly used to solve cost-minimization
problems in sewage treatment systems. The development of
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computers and software techniques has contributed to the applica-
tion of new optimization methods, such as fuzzy logic, artificial
neural networks, genetic algorithm, simulated annealing, and ant
colony algorithms (Jairaj and Vedula 2000; Reis and Akutsu 2002;
Tung et al. 2003; Albertin et al. 2006).

The genetic algorithm (GA) is a research algorithm that is analo-
gous to the theory of the evolution of the species and is used to
solve optimization problems. In the water resources field, GA is
being used widely to optimize the allocation of limited resources
among diversified and typically conflicting uses. Examples of the
application of GA in the area of water resources can be found in
studies by Chenari et al. (2014), Liu et al. (2014), Nicklow et al.
(2010), Carvalho and Kaviski (2009), Aras et al. (2007), Kerachian
and Karamouz (2007), Saadatpour and Afshar (2007), Albertin
et al. (2006), Park et al. (2006), Yandamuri et al. (2006), Ahmed
and Sarma (2005), Cho et al. (2004), Burn and Yulianti (2001), and
Vasquez et al. (2000).

In this study, the combined use of a water-quality model and GA
was used to select the minimum efficiencies for organic matter
removal, which is a preliminary stage in the selection process of
sewage treatment systems for a watershed.

Genetic Algorithm

The GA is a direct-search stochastic optimization method that was
inspired by the evolutionary mechanisms of species and is based
on population genetics, survival, and the adaption processes of
individuals.

Studies on the phenomenon of natural evolution and its occur-
rence in nature have provided characteristic mechanisms of the evo-
lution process that have been incorporated into computational
systems. The population size, selection type, crossover, mutation,
and stoppage criteria are among the most traditional GA operators
and parameters (Nicklow et al. 2010). Fig. 1 shows the generic
stages of GA that are used in optimization problems.

Mulligan and Brown (1998) described the implementation of a
genetic algorithm as follows: An initial population of a random set
of N chromosomes (usually a vector or a chain of bits) is generated
that represents possible solutions to the optimization problem. The
population size depends on the features of the problem. However,
for large populations, the process is similar to an exhaustive search
in terms of the processing time. The choice of the population size is
usually determined by the user or by using a heuristic technique.

A chromosome usually represents a set of parameters that is
used in objective functions whose responses are to be maximized
or minimized. Each chromosome is associated with a fitness value,
i.e., a grade that indicates the quality of the codified solution, which
is used to denominate the individuals in the population. The fitness
value of an individual is usually determined from the value of the
objective function that is associated with the individual itself; there-
fore, the fitness value strongly influences the selection process
within a population. Lacerda and de Carvalho (1999) indicated that,
depending on the problem, it is inadequate to use an objective func-
tion value as a fitness value, because objective functions with neg-
ative values invalidate some selection methods, and the selection
process becomes random if the values of the objective function are
very closely spaced. Moreover, an objective function with a very
high value may result in premature convergence.

Lacerda and de Carvalho (1999) have identified objective func-
tion mapping techniques (fitness scaling) to overcome these prob-
lems. Fitness scaling converts the fitness value returned by the
objective function into values that can be used to select individuals.
Bento and Kagan (2008) used rank to adjust the objective function.
In this strategy, the positions of the individuals are ranked accord-
ing to fitness to determine the selection probability for the next
generation. Even if one individual has a much higher fitness than
the other individuals, the ranking process can prevent premature
convergence in the selection process to a certain extent because this
super individual will always have the same probability of selection,
which is independent of the objective function.

GA was inspired by the natural selection process for living
beings and uses different selection methods to choose individuals
from the initial population. A fitness ranking is then used to pro-
duce an intermediate population, which finally results in a new gen-
eration of offspring individuals.

Among the different techniques that are available in the litera-
ture, one—known as the roulette wheel—is used in the classical
algorithm. Grosko et al. (2006) described this technique in terms
of assigning a survival probability for the next generation to each
individual. This probability is proportional to the fitness, in which
the fittest individuals have the highest possibility of being raffled.
Deb (1997) observed that one of the problems of this method is the
strong selection pressure. That is, there is a tendency among all of
the individuals to converge quickly to the same point, which is not
necessarily the global maximum, primarily if the fitness value of
one individual is much higher than that of the other individuals.

Another commonly used selection strategy is known as tourna-
ment selection. Lacerda and de Carvalho (1999) stated that in tour-
nament selection, a group of individuals (with equal probabilities)
is randomly selected from the population. The group participates in
a tournament, and the winner is the fittest individual. This individ-
ual is selected for the intermediate population. The process is re-
peated N times until a new population is obtained.

Lacerda and de Carvalho (1999) stated that after a population is
selected, GA applies crossover and mutation operators (the primary
GA mechanisms) to generate offspring individuals, thereby explor-
ing unknown regions of the search space.

The crossover operator is applied with a certain probability to
each pair of selected individuals of the population (called parent

No 

Yes 

Start 

Create initial population 

Evaluate individuals’ fitness 

Has stoppage criterion 
been reached? End 

Selection 

Crossover 

Mutation 

Fig. 1. Generalized chart of GA
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individuals), which produces two offspring individuals through the
exchange of genetic information. Mutation acts on the population
through the insertion of new genetic material into some individuals,
and this genetic change provides the algorithm with a larger scope
to search for the desired solution.

Different types of crossover are used for both the binary repre-
sentation and actual representation of chromosomes. The most
well-known crossover operators for chains of bits are operators
for N points and the uniform crossover. For the crossover of one
point, a random cut is applied to the chain of bits that generates two
halves in each parent chromosome. These halves are exchanged,
thus generating two new offspring individuals. For the crossover
of two points, two random cuts are chosen, and the sections be-
tween these two points are exchanged between the parents.

Lacerda and de Carvalho (1999) stated that when a uniform
crossover is applied, a mask of random bits is generated for each
pair of parents. If the first bit of the mask has a value of unity, then
the first bit of parent1 is copied to the first bit of offspring1. The
process is repeated for the remaining bits of offspring1. The process
is inverted in the generation of offspring2; that is, if the bit of the
mask is unity, then the bit of parent2 is copied. If the bit is zero, then
the bit of parent1 is copied.

Lacerda and de Carvalho (1999) observed that conventional op-
erators (i.e., the crossover of N points and the uniform crossover)
work well in binary representation. However, conventional opera-
tors exchange gene values in actual representation and therefore do
not create new information.

Michalewicz (1994) developed several operators for actual
representation, including the arithmetic crossover, the heuristic
crossover, the simple crossover, the uniform mutation, the limit mu-
tation, and the nonuniform mutation. Combining these operators
into the same GA produced a superior performance than the tradi-
tional binary GA.

Study Area

The study area is located in the upper part of the Santa Maria da
Vitória River basin, which is an important source of water for the
Great Vitoria metropolitan area, located in the state of Espírito
Santo, in southeast Brazil.

The Santa Maria da Vitoria river watershed presents a drainage
area of approximately 1,660 km2, with altitudes ranging from 0 to
1,300 m. Its perimeter is equivalent to 291 km. It is limited to the
east with Victoria Bay, to the north and west with the Reis Magos
and Doce river basins, and to the south with the Jucu, Bubu, and
Formate river basins (Habtec 1997).

The region of study lies upstream from the Rio Bonito hydro-
power plant dam, covering approximately 616 km2. In this area, the
Santa Maria da Vitória reach is 42 km long and presents the Alto
Posmoser and São Luiz rivers as main tributaries. Zorzal (2009)
highlights, for the study area, the cultivation of vegetables, live-
stock watering, and agriculture. Fig. 2 shows the location of the
study area. Fig. 3 presents a line diagram representing the studied
water system.

Methodology

Water Quality Model

A computational model was developed inMATLAB to simulate the
water quality of the system. This numerical model accounted for
the physical interactions in mixing and the biological reactions that
characterize the natural self-depuration process of the water body,
thus reproducing the mathematic formulations and conceptual and
computational structures of the QUAL-UFMG model, which Von
Sperling (2007) explained in detail.

Fig. 2. Location of the study area
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The QUAL-UFMG model is based on the QUAL2E model and
was implemented using a Microsoft Excel worksheet. The model
enables water quality to be simulated by modeling biochemical
oxygen demand (BOD), dissolved oxygen (DO), total nitrogen
and its fractions, total phosphorus and its fractions, and thermo-
tolerant coliforms. The model is a simplified version of QUAL2E.
For example, the interactions between the algae and the other con-
stituents were neglected; longitudinal dispersion was excluded
from the mass balance equation; and the Euler method was used
to perform the integration.

Von Sperling (2007) noted that the decision to disregard the in-
teractions with algae in the modeling process was based on the
knowledge that the processes involving algae are extremely com-
plex and the coefficient values are not easily determined, apart from
the fact that interactions with the algae present significant results
only in lentic environments.

Integration by the Euler method is the simplest form of integra-
tion, and is easily understood by Excel spreadsheet users. In most
simulations of varying concentrations of constituents in rivers and
pollutant transport in watercourses, steady-state conditions can be
modeled by neglecting the longitudinal dispersion term, as the con-
centration gradients are small for this type of flow.

The QUAL-UFMG model, in addition to not requiring large
amounts of data to feed its system, has a good user interface that
makes it easy to handle information and to analyze results. For the
calculation of constituent concentration profiles, the piston flow
reactor dynamics were considered, in which the advection is used
as the only transport mechanism.

Computational elements are used in the model to describe in-
cremental flows of tributaries and sewage along the entire extension
of the water body, corresponding to contributions from direct drain-
age or diffuse pollution.

The water quality was modeled by segmenting the river into
42 parts or computational elements (integration units). These com-
putational elements had constant lengths and were considered to be
completely mixed. Therefore, the parts represent groups of com-
pletely mixed reactors with common hydro-geometrical character-
istics and biological rates. The water balance for each element was
written as a function of the inflows and outflows.

The water-quality model was used to simulate the concentration
profiles for the BOD and the DO, which are the main water-quality
parameters for domestic sewage discharges.

Different types of scenarios were simulated considering a
combination of different points of domestic sewage disposal with
different flows. In the distribution of inflow points, the location of
potential places of sewage generation was considered along the
studied stretch. The simulation scenarios were characterized as
follows:
• Scenario A: Five effluent discharge points presenting the same

loads, without any type of treatment (P1 ¼ P2 ¼ P3 ¼ P4 ¼
P5 ¼ 40 L=s) into the Santa Maria da Vitória River at 8, 16,
25, 32, and 40 km; and

• Scenario B: Five effluent discharge points presenting different
pollution loads. The water-quality parameters of the effluents
were the same as those for Scenario A, but with different flows
(P1 ¼ 60 L=s, P2 ¼ 50 L=s, P3 ¼ 40 L=s, P4 ¼ 30 L=s, and
P5 ¼ 20 L=s).
For all of the effluents, the raw sewage was considered to have a

BOD5;20 of 350 mg=L and a DO concentration of zero.
The data for the kinetic constants, hydrodynamics, and water-

quality parameters used in this study were the same as those used
by Salim (2004) and Mendonça and Almeida (2005) in their analy-
ses of domestic sewage-disposal problems for the same water
system.

The kinetic constants for de-oxygenation (K1) and atmospheric
re-aeration (K2) processes were 0.24 and 0.98 day−1, respectively.
The saturation-estimated DO concentration was 8.00 mg=L−1, con-
sidering an average altitude of 900 m and water temperature of
21°C for the region under study by using an expression developed
by Pöpel (1979).

The scope of the present work does not include the validation of
the results with experimental (field) data, because its main objective
is to propose an optimization tool, combined with a water-quality
model that could be applied generally as a decision-making support
for water resources management.

Optimization Models

The following assumptions were made in developing the optimiza-
tion models in this study:
1. High efficiencies in sewage treatment systems correspond to a

higher investment to implement, operate, and maintain these
systems. Therefore, it is more convenient to adopt lower treat-
ment efficiencies, which are technologically simpler, thereby
enabling public resources to be used in other needed areas;

2. The final disposal of raw sewage in water bodies (BOD removal
efficiency ¼ 0%) was considered as an option. Thus, it was as-
sumed that all of the discharged BOD load could be assimilated
because of the self-depuration capacity of the stream;

3. The DO and BOD Brazilian environmental quality standards
had to be met in the entire water system according to the clas-
sification and the preponderant watershed uses, considering the
Resolution No. 357/2005 (Brazil 2005) of the National Envir-
onment Council (CONAMA);

4. The maximum allowable value for the treated sewage BOD was
120 mg=L, and the minimum allowable BOD removal effi-
ciency was 60%, as recommended by CONAMA Resolution
No. 430/2011 (Brazil 2011); and

5. The required removal of organic loads at defined as discharge
points along the basin were taken to be proportional to the
pollution load at each discharge point. This assumption corre-
sponded to the polluter-payer principle (Luppi et al. 2012) by
which higher investments for sewage treatment are imposed
on users with higher pollution potential.
Different groups and optimization models were determined for

various combinations of the previously mentioned assumptions.

Optimization Model I

In this model, the objective function [Eq. (1)] was formulated to
minimize the sum of the treatment efficiencies in the basin. This
approach was formulated to lower the expenditures for sewage
treatment (Assumption 1). The environmental standards associated
with the BOD and DO for CONAMA class 2 rivers were used as
constraints on the optimization model [Eqs. (2) and (3)]. The water-
courses in the Santa Maria da Vitória river basin were not subjected

42Km        

São Luis 

BOD5,20 = 8.30 
mg/L 0Km          

Santa Maria da Vitória 
Q= 3.85 m³/s 
BOD5,20 = 2.00 mg/L 
DO = 8.00 mg/L 

Alto Posmoser 
Q= 1.47 m³/s 
BOD5,20 = 2.00 
mg/L Rio Bonito 

Dam 

Q= 0.36 m³/s 

Fig. 3. Diagram of upper part of Santa Maria da Vitória River
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to a legal framework process and have therefore been classified as
class 2 rivers by CONAMA Resolution No. 357/2005.

Minimize fðEÞ ¼
X5
i¼1

Ei ð1Þ

Subject to

DORiver ≥ 5 mgL−1 ð2Þ

BODRiver ≤ 5 mgL−1 ð3Þ
In Eqs. (1)–(3), Ei represents the treatment efficiency for the

discharge i, DORiver is the DO of the watercourse, and BODRiver
is the BOD of the watercourse.

Additional constraints on the optimization model were incorpo-
rated to meet the environmental standards on the effluents. These
constraints corresponded to three different optimization groups,
which are defined as follows:
• Group 1—Ei ≥ 0: The minimum BOD removal value (60%)

was neglected, and the maximum BOD value of the treated sew-
age (120 mg=L) corresponded to that from CONAMA Resolu-
tion No. 430/2011; final disposal of the raw effluents was an
option if these effluents met the conditions, standards, and re-
quirements of CONAMA Resolution No. 430/2011. In this
group, all of the BOD load could be assimilated as a result of
the self-depuration capacity of the watercourse;

• Group 2—BODTreatedSewage ≤ 120 mg=L, according to the max-
imum raw sewage BOD established by CONAMA Resolution
No. 430/2011; and

• Group 3—Ei ≥ 60%, according to the minimum BOD removal
efficiency established by CONAMA Resolution No. 430/2011.
Discharges of treated sewage with BOD concentrations higher
than 120 mg=L were allowed in this group.
Equity among discharges was incorporated into the optimization

model as an additional constraint [Eq. (4)], which required the
highest treatment levels for the highest organic loads.

LoadDischarge i
Ei

¼ LoadDischarge n
En

; ∀ i and∀ n ð4Þ

In Eq. (4), LoadDischarge i represents the organic load of the raw
sewage for discharge i, LoadDischarge n is the organic load of the raw
sewage for discharge n, and En is the treatment efficiency for dis-
charge n.

Optimization Model II

The second optimization model consisted of an objective function
that minimized the inequity among the discharge points. The second
optimization model was formulated by assuming that the equity
among discharge points was not compulsory, which would only
be the case if the equity measure was introduced as a constraint in
the optimization problem. The objective function associated with the
second optimization model is given by Eq. (5). The constraints on this
optimization model were the same those on Optimization Model I

Minimise
Xn
i¼1

Xn
i¼j

��
LoadDischarge ðiÞ

EðiÞ

�
−
�
LoadDischarge ðjÞ

EðjÞ

��
2

ð5Þ

Optimization Model III

The third optimization model had an objective function with two
different objectives. The cost of treatment versus equity ratio

among the domestic sewage discharges was introduced in the ob-
jective function to minimize both the implementation costs of the
sewage treatment stations and the inequality among the discharges.
The assumption that sources with higher polluting loads were sub-
jected to higher treatment levels was retained.

The multiobjective problem resulting from the third optimiza-
tion model was solved using the weight method (Gass and Saaty
1955; Zadeh and Desoer 1963; Albertin 2008), in which weights
were assigned to the different terms of a single objective function.
The choice of weights reflected the importance of each of the terms
in the objective function. The subjectivity of the weight-selection
procedure is one of the disadvantages of this method. Park et al.
(2006) emphasized that additional studies are needed to determine
the weights for the terms of the objective functions, because
weights are typically selected without a specific criterion.

The weight method was applied by first identifying equivalent
terms in the objective function by assuming values of p1 and p2

that would have the same significance for multiple objectives. Next,
alternate values of p1 and p2 were used to favor one of the terms in
the objective function. Eq. (6) shows the objective function for
Optimization Model III

Minimisep1 ×
Xn
i¼1

Ei þ p2

×
Xn
i¼1

�
LoadDischarge ðiÞ

EðiÞ

�
−
�
LoadDischarge

Ē

�
ð6Þ

A preference for the term associated with the sum of the effi-
ciencies corresponded to Optimization Model III-A. Optimization
Model III-B corresponded to the preference of the decision makers
being oriented to the term for equity among discharges. Optimiza-
tion Model III-C corresponded to the two terms of the objective
function being equally significant.

Lower and upper limits of 0 and 90%, respectively, on the BOD
removal were considered for all of the optimization models in
this study.

GA Application

The more traditional parameters and AG operators are the popula-
tion size, type of selection, number of generations, probability of
recombination, and mutation probability. The determination of
these parameters is one of the main GA difficulties.

Combinations were performed among operators and genetic
parameters as generally presented in the literature. Thirty combina-
tions were performed. The algorithm was executed three times for
each combination of parameters and operators, and the lowest sum of
the efficiencies was recorded. The best combination of parameters
and operators was applied to the other optimization methods. Thus,
the combination of operators was defined for testing. This stage of
the study involved only the first optimization model.

The primary parameters and their values that are most com-
monly used in water-quality management problems were selected
from the current technical literature to determine the GA parame-
ters that were used to solve the optimization problem.

Lianhai et al. (2010), Chen-Guang et al. (2010), and Holenda
et al. (2007) showed that a population of 20 individuals was suffi-
cient for the convergence of solutions without requiring a large
processing time. In this study, in addition to a population of 20
individuals, the GA responses to populations of 100, 200, 300, and
500 individuals were also evaluated.

The fitness value of the chromosome was used to select individ-
uals from the initial population to create an intermediate population

© ASCE 04015080-5 J. Environ. Eng.
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that would undergo the crossover and mutation processes to yield
the next generation. The roulette-wheel and tournament strategies
were applied in this study. Ten individuals from the initial popula-
tion were randomly chosen for tournament selection. The individual
with the highest fitness was chosen for the intermediate population.
Selected individuals from the intermediate population were crossed,
and the mutation operator was then applied.

Lacerda and de Carvalho (1999) found that the actual crossover
rate varied between 60 and 90%. In this study, crossover rates of 50,
80, and 100% were used, based on studies by Louati et al. (2011),
Holenda et al. (2007), Cho et al. (2004), Carvalho and Kavisk (2009),
Chen-Guang et al. (2010), Lianhai et al. (2010), and Singh (2011).

The mutation rate should be chosen to ensure the diversity of the
individuals. In the current application of the classic GA to optimi-
zation problems, a fixed and small value of the mutation rate
between 0.1 and 5% is used. However, the adaptive feasible muta-
tion was used in this study. R. Kumar [“System and method for the
use of an adaptive mutation operator in genetic algorithms,” U.S.
Patent No. 7,660,773 (2010)] showed that the use of an adaptive
mutation rate is more appropriate for constrained problems.

Elitism was applied to preserve and guide the most adapted indi-
vidual in each generation to the next generation without being
modified by the genetic operators. To avoid the selective pressure
caused by the fittest individuals, three individuals were selected for
the next population. Table 1 summarizes the different operators and
parameters and their values that were considered in this study.

The optimization models used in this study were solved using
the GA toolbox in the MATLAB software. An exhaustive search
algorithm for scanning all of the possible treatment efficiency val-
ues for each scenario was developed to determine the global opti-
mum of the optimization problem, which was used to evaluate the
results of the application of GA.

Results and Discussion

In this section, the estimated sewage treatment efficiencies of the
water systems from GA application are reported for (1) the first
optimization model and the three optimization groups for Scenarios
A and B of the simulation; and (2) the three optimization models for
Scenario B of the simulation.

Table 2 lists the estimated efficiencies that were obtained using
the first optimization model for the three different optimization
groups with Scenario A.

Table 2 indicates that the lowest sum of efficiencies was pro-
duced for Group 1, for which the set of constraints enabled the
algorithm to search for the best solution in the entire search space
(i.e., efficiencies ranging from 0 to 90%). The second lowest sum of
efficiencies was obtained for optimization Group 3 because of the
set of constraints on this group that established minimum BOD re-
moval efficiencies of 60% for effluent disposal in water bodies.
Group 2 yielded the highest sum of treatment efficiencies, because

of the imposition of CONAMAResolution No. 430/2011 (i.e., sew-
age disposal in rivers can only be performed after treatment and at
BOD concentrations under 120 mg=L). Table 3 summarizes the
estimated efficiencies from applying the first optimization model
for the three different optimization groups with Scenario B.

For Scenario A, the 6,048 kg=d organic load that was collected
from the urban areas of the basin was distributed evenly among the
five effluent disposal points (i.e., 1,209.6 kg=d of organic load was
treated per discharge point). For Scenario B, 6,048 kg=d of organic
load was distributed along the water system; however, each dis-
charge point had a different load because of the decreased flows.
The disposed organic loads at the first to the fifth discharge points
were 1,814.4, 1,512, 1,209.6, 907.2, and 604.8 kg=d, respectively.
The different allocation of loads for discharge into the river reduced
the sum of the organic matter removal efficiencies required for the
sewage treatment stations (the sum of efficiencies is provided in
Tables 2 and 3). This situation occurs primarily when the self-
depuration capacity can be assumed to assimilate a considerable
part of the organic effluents produced in the basin (Group 1 of the
constraints).

This feature suggests that the correct management and/or scal-
ing of the loads along a river may affect the water-quality condi-
tions for water bodies in a watershed, which avoids the selection of
a treatment system that underestimates the assimilation capability
of rivers and consequently increases the implementation, mainte-
nance, and operation costs of the sewage treatment stations.

Figs. 4–7 show the BOD and DO profiles associated with
Scenarios A and B, in which the Santa Maria da Vitória River was
considered as a CONAMA class 2 watercourse. Figs. 4–7 clearly
show that the BOD concentrations in all of the simulated effluent
disposal scenarios did not meet the standards set by CONAMA
Resolution No. 357/2005. However, the DO concentration did
not meet the environmental quality standards only when the boun-
dary conditions for Scenario B were used.

The pollutant concentrations in the portions of the river in which
the water-quality standards were not met could be brought into
compliance by incorporating the efficiencies that were estimated
using GA, independent of the effluent disposal scenario or the
group of constraint considered.

Table 4 summarizes the results that were obtained using the dif-
ferent optimization models described previously for the first group
of constraints and the effluent disposal condition for Scenario B.

Table 1. Operators and Parameters Used in GA Application

Operator/parameter Value/type

Codification Real
Population size 300 individuals
Selection type Tournament (groups of 10 individuals)
Crossover type Arithmetic
Crossover rate 50%
Mutation type Adaptive feasible
Stoppage criterion 100 generations or convergence of results
Elitism Three individuals

Table 2. Estimated Efficiencies of Sewage Treatment Systems for Scenario
A Obtained Using First Optimization Model

Optimization
groups

Disposal points for treated
effluents P

EfficienciesP1 P2 P3 P4 P5

1 31 60 77 77 67 312
2 66 66 66 66 66 330
3 60 61 69 68 65 323

Table 3. Estimated Efficiencies of Sewage Treatment Systems for Scenario
B Obtained Using First Optimization Model

Optimization
groups

Disposal points of treated effluents P
EfficienciesP1 P2 P3 P4 P5

1 90 90 81 14 0 275
2 66 66 66 66 66 330
3 64 64 63 62 61 314
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The results in Table 4 show that the equity ratio between
discharges was met using three out of the four developed opti-
mization models. Models I, II, and III-B produced identical
treatment efficiencies for the different discharges, and therefore
the same equity value. Thus, discharges with higher organic
loads required higher BOD removal efforts. Consequently,
higher inflows of organic loads would require higher invest-
ments during the eventual implementation of the sewage treat-
ment stations.

For optimization Model III-B, the minimization term of the sum
of efficiencies was penalized; thus, a high weight was assigned to
the term in the objective function that was associated with equity
among discharges. In this model, the equity ratio was preserved.
However, when the term associated with the minimization of the
sum of the efficiencies was preferred over the term associated with
equity among the effluent discharges (Model III-A), the algorithm
produced a solution with the lowest set of estimated treatment ef-
ficiencies among the three developed optimization models, and
equity was not met. This set of lower estimated efficiencies was
quite close to the estimated value obtained for optimization
Group 1, which maximized the self-depuration capacity of the riv-
ers, as given in Table 3.

The results obtained using Optimization Model III-C demon-
strated that the adopted weights (which did not preferentially give
weight to any particular term in the objective function) neither
met the equity measure nor significantly reduced the sum of the
efficiencies.

Fig. 8 shows the evolution of the maximum fitness (i.e., the
fitness of the highest individual in a population of solutions) and
the mean fitness (i.e., the mean of the fitness grades of a pop-
ulation of solutions) across generations. The GA iterations
shown in Fig. 8 converged rapidly to a solution in the eighth
generation.

Table 5 compares the optimal solution that was obtained using
the exhaustive search algorithm to that obtained using GA.
Although the solutions were quite close in terms of the sum of
the efficiencies, the exhaustive search algorithm required substan-
tially higher processing times than the GA.

The percentage differences for the results obtained for the two
scenarios were not sufficient to distinguish between sewage treat-
ment systems: Less than 2% differences are not sufficient to differ-
entiate between treatment levels and potential sewage treatment
systems for implementation.
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Fig. 4. BOD profile for Scenario A from solution to optimization
problem
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Conclusions

The conclusions obtained from the solutions to the developed op-
timization problems and water quality modeling are summarized as
follows:
• The water-quality mathematical model that was used in this

study and implemented in the MATLAB computational environ-
ment produced consistent results that reproduced those obtained
using the QUAL-UFMG model. The water-quality model was
also versatile, because it could be connected automatically to the
optimization toolbox ofMATLAB for streamlining the GA tests;

• Different optimization models were developed in this study to
estimate the minimum efficiencies of the sewage treatment sys-
tems for the upper part of the Santa Maria da Vitória River under
different scenarios of effluent final disposal. Implementing the
proposed system could maintain water-quality standards for
BOD and DO along the entire extension of the watercourse un-
der study at the load conditions and self-depuration capacities
considered;

• Among all of the optimization models developed in this study, the
model that produced the set of lowest efficiencies corresponded

to an objective function that minimized the sum of efficiencies,
in which the environmental-quality standards were implemented
as constraints on the problem. The equity measure was incor-
porated into the optimization models to distribute the organic
load removal efforts proportionally to the organic load at each
discharge point along the watercourse;

• The multiobjective optimization model produced results that
could enable a decision maker to minimize the sum of efficien-
cies or maintain equity among discharges; and

• The exhaustive search technique was used to obtain the optimal
solution to the problem under consideration. The results ob-
tained using GAwere very close to those obtained by using the
exhaustive search technique, but required a substantially lower
computational processing time.
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